Charge Demands of Electron-withdrawing Groups: Evidence for a Saturation Effect

E. Barchiesi, S. Bradamante,* R. Ferraccioli, and G. A. Pagani*

Dipartimento di Chimica Organica e Industriale dell'Università, and Centro CNR Speciali Sistemi Organici, Via C. Golgi 19, 20133 Milano, Italy

Estimates of charge demands q_X (the fraction of π charge withdrawn by the electronegative functionalities X in X₂CH⁻) are obtained through a charge- δ (¹³C) relationship and are shown to be additive for predicting the ¹³C shift of the carbanionic carbon atom in XYCH⁻: the facts that such values are less than those for PhCH⁻X and that the combined effect of the two phenyl groups in Ph₂C⁻X is almost the same as that of one phenyl in PhCH⁻X in delocalizing the charge are attributed to saturation phenomena.

Equation (1)¹ allows the prediction of the ¹³C chemical shift of a charged trigonal carbon atom on the basis of the π electron density $q_{\rm C}$, of the carbon shift of ethylene (122.8 p.p.m.), and of the shielding effects A_i exerted by the neighbouring groups: k is the sensitivity of the carbon shift to charge (160 p.p.m. per electron).

$$\delta_{\pm}(^{13}\text{C}) = 122.8 + \Sigma A_i - k (q_{\text{C}} - 1)$$
(1)

The use of such an equation for benzyl carbanions PhCH⁻X has provided access² to experimental charge demands q_X of electron-withdrawing functionalities X: charge demand has been defined as the fraction of π negative charge delocalized by the group X. We have now applied equation (1) to carbanions YXCH⁻ diactivated with equal (X = Y) or different (X \neq Y) groups. In symmetrically disubstituted carbanionic carbon is $q_C = 2 - 2q_X$. Thus, from the experimental ¹³C shifts of the carbanions X₂CH⁻ in Me₂SO,

Table 1. π Charge demands of electron-withdrawing groups X in PhCH-X and X_2CH-.

Х	PhCH-X ^a	X_2CH^-
Ph	0.286	0.286
CO ₂ Me	0.404	0.268
$CONMe_2$	0.418	0.275
COMe	0.509	0.325
COPh	0.563	0.340
CN	0.283	0.207
SO ₂ Me	0.281	0.225
SO ₂ Ph	0.282	0.206
SOPh	0.264	0.233
$PO(OEt)_2$	0.256	0.127
2-Pyridyl	0.411	
4-Pyridyl	0.408	

^a From ref. 2.

Figure 1. Experimental ¹³C shifts of the carbanionic carbon atoms in XYCH⁻ vs. the values calculated as $\delta_{\pm} = 122.8 + A_X + A_Y - 160$ [$(2 - q_X - q_Y) - 1$].

Figure 2. Experimental ¹³C shifts of the carbonionic carbon atoms in $Ph_2C^-X vs$. the values calculated as $\delta_{\pm} = 122.8 + A_X + 2A_{Ph} - 160 [(2 - q_{Ph}) - 1].$

values for a number of functionalities X in both X_2CH^- and PhCH⁻X.² It is immediately evident that the q_X values for X_2CH^- are less than those for PhCH⁻X: this result is regarded as a manifestation of a saturation phenomenon operating in X_2CH^- on the electron-withdrawing power of the X functionality. It can be explained by considering that while in X_2CH^- the charge must be partitioned between two strong electron-withdrawing groups, in PhCH⁻X the charge is partitioned

between two groups of unequal power: the stronger group is favoured and exerts a higher charge demand. The weak charge demands of SO₂Ph, SOPh, CN, and PO(OEt)₂ are in line with previous findings,² and with X-ray structural results for benzyl anions substituted with such groups,³ and confirm the proposal that such groups stabilize the adjacent carbanionic charge by forming a π -bond associated with a weak transfer to the electronegative atom (oxygen or nitrogen).² In the carbanions XYCH-, diactivated with different groups X and Y, both of which are however strongly electronegative, the effects of X and Y are additive. This is clearly demonstrated in Figure 1, which shows the straight line obtained by plotting the experimental ¹³C shift of the carbanionic carbon atoms of some XYCH- carbanions vs. the shift calculated equation by (1) as $\delta_{\pm}(^{13}C) = 122.8 + A_X + A_Y - k [(2 - q_X - q_Y) - 1],$ where q_X and q_Y are the charge demands of the groups X and Y. The goodness of the fit supports the reliability of equation (1).

Figure 2 shows the straight line obtained by plotting the ¹³C shifts of the carbanionic carbon atoms of Ph₂C⁻X against the ¹³C values calculated as $\delta_{\pm}(^{13}C) = 122.8 + 2A_{Ph} - k$ [(2- q_X - q_{Ph}) -1], where q_{Ph} is the fraction of π charge delocalized by the phenyl group in PhCH⁻X.

Surprisingly, relative to the PhCH-X systems, the second phenyl group in Ph₂C-X is 'active' only as far its shielding effect is concerned, but has practically no effect in withdrawing charge. This must be considered as an average effect: two twisted⁴ phenyl rings in Ph₂C-X exert the same charge demand as one, almost planar,² phenyl group. This is another manifestation of saturation resulting from steric compression.

Received, 5th May 1987; Com. 608

References

- 1 S. Bradamante and G. A. Pagani, J. Org. Chem., 1984, 49, 2863.
- 2 S. Bradamante and G. A. Pagani, J. Chem. Soc., Perkin Trans. 2, 1986, 1035.
- 3 G. Boche, M. Marsch, G. M. Sheldrick, and K. Harms, Angew. Chem., Int. Ed. Engl., 1985, 24, 573; G. Boche, M. Marsch, and K. Harms, *ibid.*, 1986, 25, 373; M. Marsch, W. Massa, K. Harms, G. Baum, and G. Boche, *ibid.*, 1986, 25, 1011.
- 4 G. Casalone, A. Gavezzotti, C. Mariani, A. Mugnoli, and M. Simonetta, *Acta Crystallogr., Sect. B.*, 1970, 26, 1.